Meta-learning in Grid-based Data Mining Systems
نویسندگان
چکیده
منابع مشابه
Meta-learning in Grid-based Data Mining Systems
The Weka4GML framework has been designed to meet the requirements of distributed data mining. In this paper, we present the Weka4GML architecture based on WSRF technology for developing meta-learning methods to deal with datasets distributed among Data Grid. This framework extends the Weka toolkit to support distributed execution of data mining methods, like meta-learning. The architecture and ...
متن کاملAgent-Based Learning Classifier Systems for Grid Data Mining
Grid Data Mining tools must be able to cope with very large, high dimensional and, frequently heterogeneous data sets that are geographically distributed and stored in different types of repositories, produced from different devices and retrieved through different protocols. This paper presents an agent-based version of a Learning Classifier System. An experimental study was conducted in a comp...
متن کاملA Grid Data Mining Architecture for Learning Classifier Systems
Recently, there is a growing interest among the researchers and software developers in exploring Learning Classifier System (LCS) implemented in parallel and distributed grid structure for data mining, due to its practical applications. The paper highlights the some aspects of the LCS and studying the competitive data mining model with homogeneous data. In order to establish more efficient dist...
متن کاملSupervised Learning Classifier Systems for Grid Data Mining
This paper explores parallel and distributed implementation of the Learning Classifier System (LCS) technology. Specifically, the adaptation of supervised LCS to the grid data mining requisites, using the agent paradigm, is studied. The paper also examines the competitive data mining model induction possibility with homogeneous and heterogeneous data. A distributed framework is proposed using t...
متن کاملMeta-learning in distributed data mining systems: Issues and approaches
Data mining systems aim to discover patterns and extract useful information from facts recorded in databases. A widely adopted approach to this objective is to apply various machine learning algorithms to compute descriptive models of the available data. Here, we explore one of the main challenges in this research area, the development of techniques that scale up to large and possibly physicall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of Computer Networks & Communications
سال: 2010
ISSN: 0975-2293
DOI: 10.5121/ijcnc.2010.2514